Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4738, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549299

RESUMO

A Physical Unclonable Function uses random and inherent properties of a physical entity and can be used to uniquely identify components e.g., for anti-counterfeiting purposes. In this work we demonstrate that the surface patterns of injection moulded plastic components themselves are inherently unique and hence can be used as a PUF for reliable and secure identification. We further demonstrate that these unique surface patterns are easily accessible since they can be photographed with a simple camera set-up. This is exemplarily demonstrated for two different plastic materials on an overall of 200 injection moulded components. A set of brief experiments further examines the PUF's robustness towards real life conditions. This approach might be useful for secure identification and authentication of components or a label-free tracking.

2.
Beilstein J Nanotechnol ; 7: 613-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335751

RESUMO

The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.

3.
Beilstein J Nanotechnol ; 6: 1205-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171297

RESUMO

Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.

4.
Nanotechnology ; 26(17): 175303, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25854547

RESUMO

There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 µm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.


Assuntos
Gotículas Lipídicas/química , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Tinta
5.
Beilstein J Nanotechnol ; 6: 451-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821686

RESUMO

We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 µm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 µm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

6.
Nanoscale Res Lett ; 6(1): 211, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21711729

RESUMO

In this study, we investigated pre-structured (100) GaAs sample surfaces with respect to subsequent site-selective quantum dot growth. Defects occurring in the GaAs buffer layer grown after pre-structuring are attributed to insufficient cleaning of the samples prior to regrowth. Successive cleaning steps were analyzed and optimized. A UV-ozone cleaning is performed at the end of sample preparation in order to get rid of remaining organic contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...